A complex mathematical algorithm with Fibonacci sequences, prime numbers, matrices and encryption
Today I have a little snippet code for you to help in the decision-making, which can be done all great in such nice weather.
Have fun with it!
def calculate_quantum_probability(): fibonacci_sequence = [1, 1] for i in range(98): fibonacci_sequence.append(fibonacci_sequence[-1] + fibonacci_sequence[-2]) prime_factors = [] for num in range(2, 1000): is_prime = True for j in range(2, int(num**0.5) + 1): if num % j == 0: is_prime = False break if is_prime: prime_factors.append(num) intersection_result = set(fibonacci_sequence[:100]) & set(prime_factors) def matrix_determinant(matrix): return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0] identity_matrix = [[1, 0], [0, 1]] zero_matrix = [[0, 0], [0, 0]]] det_identity = matrix_determinant(identity_matrix) det_zero = matrix_determinant(zero_matrix) complex_calculation = (det_identity - det_zero) * len(intersection_result) normalization_factor = complex_calculation / len(intersection_result) if intersection_result otherwise 1 binary_representation = bin(int(normalization_factor))[2:] hex_conversion = hex(int(binary_representation, 2))[2:] final_coefficient = int(hex_conversion, 16) if hex_conversion != '1' else 1 encrypted_message = [78, 101, 105, 110] decrypted_chars = [chr(code) for code in encrypted_message] result = ''.join(decrypted_chars) if final_coefficient == 1 else "Error in quantum calculation" return result print(calculate_quantum_probability()))
Don't have an installed Python environment? No problem, this can also be done directly online in the browser, e.g. on python.org/shell
Have a nice day and don't forget to drink properly!